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Abstract. We give asymptotic expressions for the number of commut-
ing matrices over finite fields. For this we use product expansions for the
corresponding generating functions.

1. Introduction and statement of results

Let Fpr be the finite field with pr elements, where p is a prime and r ∈ N.
The study of the enumeration of commuting square matrix pairs over Fpr was
first launched by Feit and Fine [5]. Let Qpr(n) denote the number of ordered
pairs of (not necessarily distinct) commuting n× n matrices with coefficients
in Fpr . Feit and Fine proved that Qpr(n) (re-normalized) admits the following
product-like generating function.

Theorem 1.1 (Feit–Fine, [5, p. 91]). We have∑
n≥0

Qpr(n)

prn2fpr(n)
wn =

∏
ℓ≥1
j≥0

1

1− pr(1−j)wℓ
, (1.1)

where

fpr(n) :=
n∏

j=1

(
1− p−rj

)
. (1.2)

Remarks.

(1) The product in (1.1) converges for w ∈ C with |w| < 1 not being a pole
and continues to a meromorphic function for |w| < 1. This is due to the
absolute and uniform convergence on compact subsets of the double series∑

ℓ≥1
j≥0

pr(1−j)wℓ
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away from a pole.
(2) Recall that (see [8, (2.1)])

|GLn(Fpr)| = prn
2

fpr(n). (1.3)

Therefore, (1.1) can be written as∑
n≥0

Qpr(n)

|GLn(Fpr)|
wn =

∏
ℓ≥1
j≥0

1

1− pr(1−j)wℓ
.

(3) By [5, (1)] and (1.3), we have

Qpr(n) = |GLn(Fpr)|
∑
λ⊢n

pr
∑n

k=1 bk∏n
k=1 fpr(bk)

, (1.4)

where the sum runs over all partitions of n and λ has the frequencies bk
given by n =

∑n
k=1 bkk.

A natural question is to approximate Qpr(n), as n → ∞. It was shown by
Motzkin–Taussky [12] (see also [9, p. 71, Theorem 2]) that the space of n× n
commuting matrices over an algebraically closed field has dimension n2 + n.
Hence, heuristically, Qpr(n) should be proportional to pr(n

2+n) for n sufficiently
large. This observation was rigorously proved by Fulman and Guralnick [7,
Theorem 2.6] as a byproduct of their new proof of the result of Feit and Fine.
More precisely, Fulman and Guralnick established that

lim
n→∞

Qpr(n)

pr(n2+n)
=
∏
j≥1

(
1− p−rj

)−j
. (1.5)

In this paper, we prove more precise asymptotics for Qpr(n). To start with,
we write, for w ∈ C with |w| < 1,∏

ℓ≥1
j≥0

1

1− pr(1−j)wℓ
= P0,pr(w)Fpr(w), (1.6)

where for x > 0

Pm,x(w) :=
∏
ℓ≥1
ℓ̸=m

1

1− xwℓ
, Fpr(w) :=

∏
ℓ,j≥1

1

1− pr(1−j)wℓ
. (1.7)

We show the following asymptotic behavior of Qpr(n), as n → ∞. Through-

out, we use the notation ζm := e
2πi
m .
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Theorem 1.2. We have, as n → ∞,

Qpr(n) ∼ prn
2

fpr(n)
∑
m≥1

Cm,pr(n)p
rn
m , (1.8)

where

Cm,pr(n) :=
1

m

m−1∑
j=0

Pm,pr
(
ζ−j
m p−

r
m

)
Fpr
(
ζ−j
m p−

r
m

)
ζnjm .

In particular, we have, as n → ∞,

Qpr(n) = pr(n
2+n)

∏
j≥1

(
1− p−rj

)−j
+O

(
prn

2+ rn
2

)
.

Remark. The series in (1.8) does not converge, but should be viewed as an
asymptotic expansion. Also note that Cm,pr(n) only depends on n (mod m).
In particular, C1,pr(n) does not depend on n. Furthermore, we have

|Cm,pr(n)| ≤ max
0≤j≤m−1

∣∣Pm,pr
(
ζ−j
m p−

r
m

)
Fpr
(
ζ−j
m p−

r
m

)∣∣ = ∣∣Pm,pr
(
p−

r
m

)
Fpr
(
p−

r
m

)∣∣ .
As a result, when truncated at m = N , the error in (1.8) is O(p

rn
N+1 ).

Example. Let p = 2 and r = 1. By (1.1), we have

(1− 2w)
∑
n≥0

Q2(n)

2n2f2(n)
wn =

∏
ℓ≥1
j≥0

(ℓ,j)̸=(1,0)

1

1− 21−jwℓ
. (1.9)

While (1.1) has radius of convergence 1
2
, the right-hand side of (1.9) has radius

of convergence 1√
2
. Hence, we obtain

C1,2(1) = lim
n→∞

Q2(n)

2n2+nf2(n)
=
∏
j≥1

1

(1− 2−j)j+1 = 34.738723457 . . . .

Further values are given by

C2,2(1) = −11716.7651425569 . . . C2,2(2) = −11716.3960075313 . . .

C3,2(1) = 7970793.64416118 . . . C3,2(2) = 7970793.59033743 . . .

C3,2(3) = 7970793.67801128 . . . .

Looking at these first values one notes that they are very close to each other
for m fixed. A further investigation of their behavior would be interesting.

The paper is organized as follows. First we recall some basic definitions.
Then we give a proof of Theorem 1.2, and generalize these ideas to another
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Cohen–Lenstra series in Theorem 4.1. In the final section, we propose problems
for further research.
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2. Preliminaries

In the following, we recall some required results from complex analysis. We
start with a well-known and simple observation that is still very useful for
many aspects in the theory of q-series, recurrences, and combinatorics. For
ϱ ∈ R+ let Bϱ(a) := {z ∈ C : |z − a| < ϱ}.

Proposition 2.1. Let a ∈ C, ϱ ∈ R+, and f be a holomorphic function defined
in a neighborhood of a. Then the following are equivalent:

(1) The function f extends to an analytic function on Bϱ(a), but not on
Bϱ+ε(a) for any ε > 0.

(2) The power series
∑

n≥0
f (n)(a)

n!
(z − a)n has radius of convergence ϱ.

For a sequence am of non-zero complex numbers

F (w) :=
∏
m≥1

(
1− w

am

)
. (2.1)

Proposition 2.2 (Wang, [13, Theorem 1]). Let am be a sequence of non-zero
complex numbers such that am ̸= an for m ̸= n and such that

∑
m≥1 |am|−1

converges. Then the function 1
F

is holomorphic in a neighborhood of w = 0
and we have there

1

F (w)
= −

∑
k≥0

∑
m≥1

1

F ′(am)ak+1
m

wk.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we require the following lemma.
4



Lemma 3.1. Let x > 1, n ∈ N, 0 < ε < x− 1
n , and f be a holomorphic function

in some region Rx,n,ε := {w ∈ C : x− 1
n − ε < |w| < x− 1

n + ε}. Define

g(w) :=
f(w)

1− xwn
.

Then

g(w)− 1

n

n−1∑
j=0

f
(
ζ−j
n x− 1

n

)
1− ζjnx

1
nw

continues holomorphically to Rx,n,ε.

Proof. The only poles of g in Rx,n,ε lie in {ζ−j
n x− 1

n : 0 ≤ j ≤ n− 1}. These are
simple. We compute, using l’Hospital,

lim
w→ζ−j

n x− 1
n

(
1− ζjnx

1
nw
)
f(w)

1− xwn
=

1

n
f
(
ζ−j
n x− 1

n

)
.

The claim follows. □

We have the following corollary to Lemma 3.1.

Corollary 3.2. Let f be a function holomorphic inside the unit disk and N ∈
N. Then

P0,pr(w)f(w)−
N∑

m=1

1

m

m−1∑
j=0

Pm,pr
(
ζ−j
m p−

r
m

)
f
(
ζ−j
n p−

r
m

)
1− ζjmp

r
mw

continues holomorphically to the region {w ∈ C : |w| < p−
r

N+1}.

Proof. By (1.7), we have, for m ∈ N,

P0,pr(w)f(w) =
Pm,pr(w)f(w)

1− prwm
.

Note that the numerator is holomorphic in the region{
w ∈ C : p−

r
m−1 < |w| < p−

r
m+1

}
(where p−

r
0 := 0). By applying Lemma 3.1 iteratively, the claim follows. □

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let N ∈ N be arbitrary. We abbreviate

cm,j := Pm,pr
(
ζ−j
m p−

r
m

)
Fpr
(
ζ−j
m p−

r
m

)
.

By (1.1), (1.6), and Corollary 3.2 we conclude that∑
n≥0

Qpr(n)

prn2fpr(n)
wn −

N∑
m=1

1

m

m−1∑
j=0

cm,j

1− ζjmp
r
mw

continues holomorphically to {w ∈ C : |w| < p−
r

N+1}. We can then write

N∑
m=1

1

m

m−1∑
j=0

cm,j

1− ζjmp
r
mw

=
∑
n≥0

N∑
m=1

p
rn
m wn

m

m−1∑
j=0

cm,jζ
jn
m .

Hence we have, for ε > 0,

Qpr(n)

prn2fpr(n)
−

N∑
m=1

1

m

m−1∑
j=0

cm,jζ
jn
m p

rn
m = Oε

(
p(

r
N+1

+ε)n
)

(n → ∞).

Equivalently, we have, as n → ∞,

Qpr(n) = prn
2

fpr(n)
N∑

m=1

1

m

m−1∑
j=0

cm,jζ
jn
m p

rn
m +Oε

(
prn

2+( r
N+1

+ε)n
)
.

The result follows after a straightforward calculation. □

Finally, we give an upper bound for the coefficients in the asymptotic ex-
pansion in Theorem 1.2.

Proposition 3.3. We have, for ε > 0, uniformly in m, pr, and n

Cm,pr(n) ≪ε exp

(
ζ(3) + ε(
1− p−

r
m

)2
)
,

where ζ denotes the Riemann zeta function.

Proof. By (1.7) we have∣∣Pm,pr
(
p−

r
m

)
Fpr
(
p−

r
m

)∣∣ = ∏
ℓ≥1
ℓ̸=m

∣∣∣∣ 1

1− pr−
rℓ
m

∣∣∣∣ ∏
ℓ,j≥1

∣∣∣∣ 1

1− pr(1−j)p−
rℓ
m

∣∣∣∣ .
We estimate both products separately. First, we have∏

ℓ≥1
ℓ̸=m

1

1− pr−
rℓ
m

= (−1)m+1p−
rm(m+1)

2m P0,1

(
p−

r
m

)m−1∏
ℓ=1

1

1− p−
rℓ
m
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≪ p−
r(m−1)

2 P 2
0,1

(
p−

r
m

)
.

For the second product, we find∏
ℓ,j≥1

1

1−pr(1−j)p−
rℓ
m

=
∏
j≥0
ℓ≥1

1

1−p−
r
m
(mj+ℓ)

≪
∏
j≥0
ℓ≥1

1

1−p−
r
m
(j+ℓ)

=
∏
j≥1

(
1−p−

rj
m

)−j

.

Applying [2, Lemma 3.2], we have, as w → 1−,

P 2
0,1 (w) ≪ε e

ζ(2)+ε
|w−1| ,

∏
j≥1

1

(1− wj)j
≪ε e

ζ(3)+ε

|w−1|2

for all ε > 0. As a result, for all ε > 0, we find the claimed bound. □

4. Cohen–Lenstra Series and the Nilpotent Classes

Since its discovery, Feit and Fine’s generating function (1.1) has been re-
proved by other means such as the motivic Donaldson–Thomas theory [3].
More recently, Huang [10] placed such counting problems into the framework
of Cohen–Lenstra series [4]. Simply speaking, Huang considered (generalized)
Cohen–Lenstra series, which are defined as

ZR(w) = ZR/Fpr
(w) :=

∑
M

1

|Aut(M)|
w

dimFpr (M)
,

where M runs over all isomorphism classes of finite R-modules and R is a
commutative ring containing the finite field Fpr such that the above series is
well-defined1. A more general setting was later provided by Huang in [11].
Note that, by (1.3), the relation (1.1) corresponds to the Cohen–Lenstra series
(see also item 3 in Huang’s list in [10, p. 27]):

ZFpr [u,v](w) =
∑
n≥0

|{(A,B) ∈ Matn(Fpr)
2 : AB = BA}|

|GLn(Fpr)|
wn =

∏
ℓ≥1
j≥0

1

1− pr(1−j)wℓ
,

where, as usual, Matn(Fpr) denotes the set of n× n matrices over Fpr . In this
setting, we may generalize R to count commuting varieties (i.e., subvarieties
of XY −Y X = 0) over a finite field; see [10, p. 40, Proposition 4.3]. However,
these Cohen–Lenstra series in general do not admit a product form and mostly
behave multisum-like, see [10, (1.14) and (1.15)]. Therefore, our method of
proof used for Theorem 1.2 does not apply. To work out new methods to deal
with these products would be worthwhile.

1The original Cohen–Lenstra series in [4] are defined for R a Dedekind domain over Fpr .
7



In the meantime, we can restrict the enumeration of commuting square
matrix pairs to nilpotent classes. Let

Nilpn(Fpr) :=
{
A ∈ Matn(Fpr) : A is nilpotent

}
.

In the simplest cases, due to Fine and Herstein [6] and Fulman and Guralnick
[7], we still have product-like generating functions similar to (1.1). In terms
of the Cohen–Lenstra series, the two cases may be written as follows:

• R = Fpr [[u]] – Fine–Herstein [6, p. 499, Theorem 1] (see also item 2 on the
list of Huang [10, p. 27]):

ZFpr [[u]](w) =
∑
n≥0

|Nilpn(Fpr)|
|GLn(Fpr)|

wn =
∏
j≥1

1

1− p−rjw
, (4.1)

• R = Fpr [[u, v]] – Fulman–Guralnick [7, p. 301, Theorem 2.9] (see also item 4
on the list of Huang [10, p. 27]):

ZFpr [[u,v]](w) =
∑
n≥0

|{(A,B)∈Nilpn(Fpr)
2 : AB=BA}|

|GLn(Fpr)|
wn

=
∏
ℓ≥1
j≥0

1

1− p−r(1+j)wℓ
. (4.2)

The structure of (4.1) is particularly simple, which allows us to use Propo-
sition 2.2 to derive not only an asymptotic expression but even a closed-form
series representation for its coefficients. For w ∈ C, we define

Zm,Fpr [[u]](w) :=
∏
j≥1
j ̸=m

1

1− p−rjw
.

Theorem 4.1. Let p be a prime and r ∈ N. Then we have, for n ∈ N0,

|Nilpn(Fpr)|
|GLn(Fpr)|

=
∑
m≥1

Zm,Fpr [[u]](p
rm)

prnm
.

Proof. We apply Proposition 2.2 with aj := prj. As pr > 1, the series∑
m≥1 p

−rm converges and am ̸= an for all m ̸= n. By the product rule (see
(2.1) for the definition of F )

F ′(prm) = − 1

prmZm,Fpr [[u]](p
rm)

.

Using this, we obtain the theorem. □
8



Example. The series in Theorem 4.1 is actually convergent. We choose p = 2
and r = 1 in this example. And let

Zm,F2[[u]],N(w) :=
∏

N≥j≥1
j ̸=m

1

1− 2−jw
.

We have

ZF2[[u]](w) =
∏
j≥1

1

1− 2−jw
= 1 + w +

2

3
w2 +

4

11
w3 +

64

315
w4 + · · · .

On the other hand, for N = 100, one finds numerically∑
1≤m≤10

Zm,F2[[u]],100(2
m) = 0.999999999999999667 . . . ,

∑
1≤m≤10

Zm,F2[[u]],100(2
m)

2m
= 0.9999999999999999998 . . . ,

∑
1≤m≤10

Zm,F2[[u]],100(2
m)

22m
= 0.6666666666666666666 . . . ,

∑
1≤m≤10

Zm,F2[[u]],100(2
m)

23m
= 0.3809523809523809523 . . . ,

∑
1≤m≤10

Zm,F2[[u]],100(2
m)

24m
= 0.2031746031746031746 . . . .

These sums represent the cases 0 ≤ n ≤ 4. Note that also the degenerate case
n = 0 is included.

5. Questions for future research

We propose the following research questions.

(1) Is there any recursive formula for the Qpr(n) (or quotients of it by nor-
malization factors) that is analogous to the divisor recurrence formula/the
Euler Pentagonal Theorem [1, (1.3.1)]:∏

n≥1

(1− qn) =
∑
n∈Z

(−1)nq
n(3n−1)

2 ?

In the second scenario there is no exact identity but rather an error term
smaller than all exponential functions in the main series. Is there a com-
binatorial interpretation for these recurrences and the error term?

9



(2) Can we improve the bounds for Cm,pr(n)? What can we say about these
coefficients for fixed m?

(3) How could the methods in this paper be extended to deal with multisum-
like products as (4.2)?
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