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ABSTRACT. We give asymptotic expressions for the number of commut-
ing matrices over finite fields. For this we use product expansions for the
corresponding generating functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let F,» be the finite field with p” elements, where p is a prime and r € N.
The study of the enumeration of commuting square matrix pairs over F, was
first launched by Feit and Fine [5]. Let Q,»(n) denote the number of ordered
pairs of (not necessarily distinct) commuting n x n matrices with coefficients
in F,-. Feit and Fine proved that @, (n) (re-normalized) admits the following
product-like generating function.

Theorem 1.1 (Feit-Fine, [5, p 91]). We have

i 1
me T :Hm7 (1.1)

n>0 >1
§>0

where

=J[(@-p) (1.2)
7=1
Remarks.
(1) The product in (1.1) converges for w € C with |w| < 1 not being a pole
and continues to a meromorphic function for |w| < 1. This is due to the
absolute and uniform convergence on compact subsets of the double series

Z pr(l—j)wé

>1
j=0
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away from a pole.

(2) Recall that (see [8, (2.1)])
|GLy (Fpr)| = pmzfpr (n). (1.3)

Therefore, (1.1) can be written as

Z IGL H r(1=7) gt

n>0 Z>

(3) By [5, (1)] and (1.3), we have

O (n) = |GL(F |Z TZk 108
r{n) =
! n Hk 1 for( (bx)’

where the sum runs over all partitions of n and \ has the frequencies by,
given by n =Y, _ bik.

(1.4)

A natural question is to approximate ),~(n), as n — oo. It was shown by
Motzkin—Taussky [12] (see also [9, p. 71, Theorem 2|) that the space of n x n
commuting matrices over an algebraically closed field has dimension n? + n.
Hence, heuristically, (), (n) should be proportional to p’"(”2+”) for n sufficiently
large. This observation was rigorously proved by Fulman and Guralnick |7,
Theorem 2.6] as a byproduct of their new proof of the result of Feit and Fine.
More precisely, Fulman and Guralnick established that

lim 2 (") =[[C-p"9)". (1.5)

n—+00 pr(n2+n) .
gzl

In this paper, we prove more precise asymptotics for Q,-(n). To start with,
we write, for w € C with |w| < 1,

1
H 1 — pra=dy! = Bopr (W) Fyr (w), (1.6)
>1
j>0
where for z > 0
1 1

Pm,x(w) = H 1_ J}we, Fpr<w) = H m (17)

é%l £5>1

We show the following asymptotic behavior of Q,-(n), as n — oo. Through-
27

out, we use the notation (,, :=e™m .
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Theorem 1.2. We have, as n — oo,
Qpr (n) pm for(n Z Crngr (0 (1.8)
m>1

where
1 m—1 ‘ ) ‘ ) A
= > Py (G20 ) By (G20 ) G
§=0
In particular, we have, as n — 00,
Que(n) = pr I TT (1= ) 7 0 (%)
j=1

Remark. The series in (1.8) does not converge, but should be viewed as an
asymptotic expansion. Also note that Cp,,r(n) only depends on n (mod m).
In particular, Cy pr(n) does not depend on n. Furthermore, we have

T T T

[Crngr ()] < max | Py (G0 ) Eyr (G707 ) | = [ Progr (077 B (7)) -

0<5<m
]\711)

As a result, when truncated at m = N, the error in (1.8) is O(p

Example. Let p=2 and r = 1. By (1.1), we have
" 1

n>0 0>1
J=0
(£.3)7#(1,0)
While (1.1) has radlus of convergence 1, the right-hand side of (1.9) has radius
of convergence f Hence, we obtain

1
Cia(1) = lim QH%(JC )( 7= ]1;[1 =T = 34.738723457 ..
Further values are given by
C9(1) = —11716.7651425569 . . . C2(2) = —11716.3960075313 . . .
C52(1) = 7970793.64416118 . .. C52(2) = 7970793.59033743 . ..

C32(3) = 7970793.67801128. . ...

Looking at these first values one notes that they are very close to each other
for m fixed. A further investigation of their behavior would be interesting.
The paper is organized as follows. First we recall some basic definitions.

Then we give a proof of Theorem 1.2, and generalize these ideas to another
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Cohen—Lenstra series in Theorem 4.1. In the final section, we propose problems
for further research.
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2. PRELIMINARIES

In the following, we recall some required results from complex analysis. We
start with a well-known and simple observation that is still very useful for

many aspects in the theory of g-series, recurrences, and combinatorics. For
o€ Rt let By(a) :={z€C:|z—al <o}

Proposition 2.1. Leta € C, p € RT, and f be a holomorphic function defined
in a neighborhood of a. Then the following are equivalent:

(1) The function f extends to an analytic function on B,(a), but not on
By,ic(a) for any € > 0.

(2) The power series ), - 1)

n!

(z —a)™ has radius of convergence p.

For a sequence a,, of non-zero complex numbers

F(w) =[] (1 - %) . (2.1)

m>1

Proposition 2.2 (Wang, [13, Theorem 1]). Let a,, be a sequence of non-zero

complex numbers such that a,, # a, for m # n and such that Zm21 ||t

converges. Then the function L is holomorphic in a neighborhood of w = 0

F
and we have there

1 1 K

D) L

3. PROOF OF THEOREM 1.2

To prove Theorem 1.2, we require the following lemma.
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Lemma 3.1. Letz > 1,ne N, 0<e < :17’%, and f be a holomorphic function
in some region Ryne = {w e C: z7w —e < |w| < x™n + e}, Define

Then
p ot f (G
0 T Gt

§=0
continues holomorphically to Ry .

Proof. The only poles of g in R, ,, . lie in {g‘;jx_% : 0 <j <n-—1}. These are
simple. We compute, using 1’'Hospital,

lim (1 _ ng%w)f(w) = %f(cnj:ci)

R 1 o n
w—Cp T 1 Tw

The claim follows. O

We have the following corollary to Lemma 3.1.

Corollary 3.2. Let f be a function holomorphic inside the unit disk and N €
N. Then

r

N ol p e (G F (G
po,pr<w)f(w>_2%2 o (') [ (G )

— 1 — (npmw

continues holomorphically to the region {w € C : |w| < p~ ¥+ }.
Proof. By (1.7), we have, for m € N,
Py () ()

1 _ prwm

Popr(w) f(w) =
Note that the numerator is holomorphic in the region

{w eC:p mi < |uwl <p*mL+1}
(where p~@ := 0). By applying Lemma 3.1 iteratively, the claim follows. [

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let N € N be arbitrary. We abbreviate

Cm,j = Prpr (Cn_ljp_%) Fyr (Cn_ljp_%) .
By (1.1), (1.6), and Corollary 3.2 we conclude that
> Z Z o
= P f L= Gupriw
continues holomorphically to {fw e C:|w| < p_m}. We can then write

Z Z ~ Cmy Z Z pm w Z cm,gC]n

7 =
Cp mw n>0 m=1

Hence we have, for ¢ > 0,

prn f Z Zcm,JCj pm = < (NL“JFE)n) (n — 00).

Equivalently, we have, as n — oo,
N 1 m—1
7”712 in T rn2 _r n
QPT(n) =P pr(n) 231 E Z; Cm,ijnpm + O, <p +(N+1+5) ) .
m= j=

The result follows after a straightforward calculation. O

Finally, we give an upper bound for the coefficients in the asymptotic ex-
pansion in Theorem 1.2.

Proposition 3.3. We have, for € > 0, uniformly in m, p", and n
((3) +¢ )

(1-p5)°)

where ¢ denotes the Riemann zeta function.

Proof. By (1.7) we have

Crnpr(n) <. exp (

v r 1 1
P (075 By () = ] |—=| T1 e
51 1—p™m 65>1 1— pr(l—J)p—m
l#£m
We estimate both products separately. First, we have
m—1
1 m _ rm(m+1) _r
[[——=C0"" "= Palp ——
o1 L=p'm o L—pm



<Lp

o (p7m)
For the second product, we ﬁnd

i\ —J
1T H (mﬁé <<1_[1 -~ r(ﬁe :H<1—p_a> .

ii>1 1= —p' ]>o 7>0 j>1
>1 >1

Applying [2, Lemma 3.2], we have, as w — 17,

¢(2)+e 1 ¢(3)+e
Foy (w) < el H— <. elw-1P?
| i1 (1 —w)

for all € > 0. As a result, for all € > 0, we find the claimed bound. O

4. COHEN—LENSTRA SERIES AND THE NILPOTENT CLASSES

Since its discovery, Feit and Fine’s generating function (1.1) has been re-
proved by other means such as the motivic Donaldson-Thomas theory [3].
More recently, Huang [10] placed such counting problems into the framework
of Cohen-Lenstra series [4]. Simply speaking, Huang considered (generalized)
Cohen—Lenstra series, which are defined as

d1m (M
ZR( ) ZR/F Z|Aut ]Fp( )’

where M runs over all isomorphism classes of finite R-modules and R is a
commutative ring containing the finite field IF,» such that the above series is
well-defined'. A more general setting was later provided by Huang in [11].
Note that, by (1.3), the relation (1.1) corresponds to the Cohen—Lenstra series
(see also item 3 in Huang’s list in [10, p. 27]):

[{(A, B) € Mat,(F,~)?: AB = BA}] 1
ZFpr[u,v}(w) = Z ’GL ( )‘ H 1 p”(lfj)wf’

n>0

>1
Jj=0

where, as usual, Mat,,(F,) denotes the set of n x n matrices over F,-. In this
setting, we may generalize R to count commuting varieties (i.e., subvarieties
of XY —Y X = 0) over a finite field; see [10, p. 40, Proposition 4.3]. However,
these Cohen—Lenstra series in general do not admit a product form and mostly
behave multisum-like, see [10, (1.14) and (1.15)]. Therefore, our method of
proof used for Theorem 1.2 does not apply. To work out new methods to deal
with these products would be worthwhile.

'The original Cohen-Lenstra series in [4] are defined for R a Dedekind domain over F,.
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In the meantime, we can restrict the enumeration of commuting square
matrix pairs to nilpotent classes. Let

Nilp,, (Fyr) := {A € Mat,(F,) : A is nilpotent }.

In the simplest cases, due to Fine and Herstein [6] and Fulman and Guralnick

[7], we still have product-like generating functions similar to (1.1). In terms

of the Cohen—Lenstra series, the two cases may be written as follows:

e R =F,[[u]] - Fine-Herstein [6, p. 499, Theorem 1] (see also item 2 on the
list of Huang [10, p. 27]):

|Nilp,, (Fpr)| 1
Tk i —I]—F 4.1
o [ (W0 Z GL,(F gl_pmw (4.1)

o R=TF,[u,v]] - Fulmanquralnick [7, p. 301, Theorem 2.9] (see also item 4
on the list of Huang [10, p. 27]):

Z {(A, B) GNﬂpn(IF ) :AB= BA}]

)] (W
- H r(14j) £ (42)

>1

7>0

The structure of (4.1) is particularly simple, which allows us to use Propo-
sition 2.2 to derive not only an asymptotic expression but even a closed-form
series representation for its coefficients. For w € C, we define

1
gyt () = ] ——
1P
Fm

Theorem 4.1. Let p be a prime and r € N. Then we have, for n € Ny,

INilp,, (Fpr)| _ > Zyn e [o) (P)
|GLn<]FpT)|

TN
m>1 p

Proof. We apply Proposition 2.2 with a; := p. As p" > 1, the series
Y s b converges and a,,, # a, for all m # n. By the product rule (see

(2.1) for the definition of F)
1

prm m,Fpr[[u]] (prm) .
Using this, we obtain the theorem. ([l

F'(p™) = -



Example. The series in Theorem 4.1 is actually convergent. We choose p = 2
and r = 1 in this example. And let

1
Znmgav() = 1] =555

N>j>1
j#m

1 2 , 4 45 64
ZFz[[u}](w):Hm:1+w+§w +ﬁw —I—%w + ...
jz1

On the other hand, for N = 100, one finds numerically
Z Zn Fofful],100(2™) = 0.999999999999999667 . . . ,

1<m<10

Zom afful100(2™
P “2}1;300( ) — 0.9999999999999999095 ...

1<m<10

Zom afful 100(2™
S ol 1100(2") _ 6666666666666666666. .

22m
1<m<10

Zom it 100(2"
P “22;71100( ) — 0.3800523800523800523 ..

1<m<10

Zm U 2m
Yo Smkd 1100(2") _ ) 9031746031746031746 ...

24m
1<m<10

These sums represent the cases 0 < n < 4. Note that also the degenerate case
n = 0 is included.

5. QUESTIONS FOR FUTURE RESEARCH

We propose the following research questions.

(1) Is there any recursive formula for the @Q,-(n) (or quotients of it by nor-
malization factors) that is analogous to the divisor recurrence formula/the
Euler Pentagonal Theorem [1, (1.3.1)]:

n(3n—1)
[[a-ay=> (=2
n>1 neL
In the second scenario there is no exact identity but rather an error term

smaller than all exponential functions in the main series. Is there a com-

binatorial interpretation for these recurrences and the error term?
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(2)
(3)

[1]
2]

U

Can we improve the bounds for Cy, ,-(n)? What can we say about these
coefficients for fixed m?

How could the methods in this paper be extended to deal with multisum-
like products as (4.2)7?
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